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Abstract

This is a preliminary, very brief summary of nonlinear time series useful
for finance. The purpose of these notes is to provide an overview of nonlinear
time series and their financial applications. The notes cover the basics of lin-
ear and nonlinear difference equations, chaos, and linear and nonlinear time
series, all in a bit over 20 pages! This is very brief. I make no pretense that
the notes are complete, although I do think that they are an informative intro-
duction to nonlinear time series if you have some familiarity with linear time
series analysis. Comments or suggestions are welcome.

Acknowledgement 1 This summary is based on lectures given at the University
of Rome at Tor Vergata in November 2000. Linda Mundy transcribed the notes, no
small task. This draft corrects some typographical errors in an earlier version. I
expect to update the draft shortly. This will not change anything fundamental.

1 Introduction

Nonlinear time series analyses are appearing more and more often in finance.
Nonlinear time series analysis, however, seems very complicated and you may

think that it is comprehensible only to sophisticated econometricians. In these



notes, I provide some suggestion that nonlinear time series analysis can be infor-
mative about financial markets. I also hope to dispel the notion that the subject
is that all that complex. Like a lot of things, once you understand it, it’s easy. A
key in nonlinear time series is to learn how different things are related and re-
member that. In particular, it is important to see how linear time series analysis
is related to nonlinear time series analysis, which suggests when nonlinear time

series analysis is likely to be informative.

2 Chaos

Nonlinear time series often is confused with chaos, which is unfortunate. I think
that chaos theory has a bad reputation in economics and finance. I am inclined to
think that this bad reputation is due to the fact chaos plays a particular role in the
physical sciences which is relatively unimportant in economics and finance. That
role is to show that equations summarizing a small number of factors can appear
“random” even though the process is strictly deterministic. It is useful to discuss
chaos, partly to know what it is, but also partly because some of the tools used
in chaos theory are useful for helping to understand nonlinear time series. Fur-
thermore, you will see that nonlinear difference equations can have very different
implications than the limited possibilities with linear difference equations.

Chaos theory is the analysis of certain nonlinear deterministic equations. Chaos
is defined by two characteristics of some nonlinear difference equations and their

solutions:



1. Sensitive dependence on initial conditions.

2. Seemingly “random” behavior in the sense of having a continuous distribu-
tion of the values produced.

As these characteristics suggest, nonlinear difference equations have quite dif-

ferent properties than linear ones.

2.1 Linear Difference Equations

A linear difference equation is rather simple. Consider the simple first-order dif-
ference equation

Xt = KXp_1. 1)

The properties of this equation are well known. The behavior is defined by three
regions. If 0 < |a| < 1, then the equation is stable: any deviation from the steady-
state value is followed by return to that steady-state Value If « = 1, the equation
is metastable with the value of x always being whatever it happens to be. For ex-
ample, if xp = 5, then x; = 5, x = 5,.... This is singularly uninteresting in a
deterministic context. While it is dubious whether a univariate difference equa-
tion should ever be regarded as an “explanation” of anything, just saying that
”something is whatever it is” certainly is uninformative. Stated differently, equa-
tion (1) with & = 1 says that any deviation will persist forever. This can in fact

be interesting behavior in a stochastic (or random) ContextE| From the standpoint

IThe steady-state value, of course, is zero. If you don’t see this right away, then you may want
to review difference equations before proceeding further.

2Such behavior was thought to be the defining characteristic of an “efficient market” at one
time.



of economic and financial applications, the form of metastability if « = —1 is less
interesting: in this case, xyp = 5 is followed by x; = =5, xp = 5, x3 = =5, ....
If || > 1, then the equation is explosive and any deviation from the steady-state
value is followed by increasing divergence. More formally, if « > 1, then xg > 0
implies that x; — o0 and x9 < 0 implies that x; — —oco. If x < —1, then x;
also diverges from the steady-state value but the value of x alternates between
increasingly large positive and negative values. This strictly explosive behavior
is not very interesting for saying something about financial markets. This uni-
form divergence suggests focusing on |a| < 1. This leaves us with either uniform
convergence or “something is whatever it is”.

Adding more lags to equation (1) introduces possibilities of cycles but nothing
else.

In what follows, I probably would run out of symbols if I tried to use unique
symbols for every different function. At the least, I would end up using some
unusual letters. Instead, [ will use ¢, 7 and ( to represent innovations and I will use
other Greek letters to represent the coefficients. The coefficients are not necessarily

related across the functions. Roman-alphabet letters are variables.

2.2 Nonlinear Difference Equations

Nonlinear difference equations are far more complex. Consider the seemingly

simple nonlinear difference equation

Xp = &Xp—1 — ocx%,l, )



which does not seem all that different from equation E| It is, however, quite

different, a fact that may be more slightly more apparent if it is written
xp = axp-q(1—x-1), (©)

a version which suggests some possible special significance of the value unity for
x;—1. In fact, the range of equation (3) is not the same for values more or less than
unity, which is quite different than for the linear difference equation (I). Suppose
that « > 0 and that we consider only starting values of x between zero and one. As
for the linear difference equation , the behavior of x depends on the value of «,
but the dependence is much more complicated for equation (3) than for equation
(1).

Suppose that the value of a is 0.7, which would be a parameter value associated
with convergence to zero for the linear difference equation. It is easy to compute

that an initial value of x equal to 0.6 generates the sequence

0.6000
0.1680
0.0978
0.0618
0.0406
0.0273
0.0186
0.0127
0.0088
0.0061.

The values are converging to zero uniformly. This general behavior is not dif-

3This equation often is called the logistic difference equation.



ferent than the linear difference equation’s behavior.
How about a value of a equal to unity, which would be a metastable linear
difference equation. What happens now? With an initial value of x = 0.6 and

« = 1, the sequence is

0.6000
0.2400
0.1824
0.1491
0.1269
0.1108
0.0985
0.0888
0.0809
0.0744

This appears to be converging to zero. How can this be? The steady-state value

can be determined by solving the quadratic equation

T =ax(1—7), (4)

where ¥ is the steady-state value by setting a equal to unity. This equation is

¥ =7%(1-7%),

which can also be written ¥* = 0, which evidently can be true only if ¥ = 0. This
is not always a good way to find steady-state values, but it is easy to see that zero
is the only one that will work in equation (3) with a equal to unity. Convergence

to zero for # = 1 is an interesting difference from the linear difference equation,



but it is not exactly exciting.
Suppose, though, the value of « is 3.1 (not arbitrarily chosen). Now what hap-

pens? The first ten values of the sequence of x’s is

0.6000
0.7440
0.5904
0.7496
0.5818
0.7543
0.5746
0.7578
0.5691
0.7602

There is no tendency for the values to settle down to zero. In fact, it looks
more like the values are converging to a two-period cycle with alternating values
of about 0.57 and 0.76. Are they? Actually, iteration suggests that they will settle
down to alternating values of about 0.5580 and O.7646H What happens for other
initial starting values? Iterating with a parameter value of « = 3.1 and starting
from any value of x between zero and one other than exactly 21/31 (a set of mea-
sure zero), the resulting values of x are given by the phase diagram in Figure 1.
The X’s mark the eventual two-period cycle.

Suppose that the value of « is 4. With & = 4, there is no tendency for the values
to return to the same values ever. Figure 2 shows the sets of values, marked
by much smaller empty circles than in Figure 1. The sequence of values fills up

the space between zero and one in the same way that a continuous distribution

*You can check that these values are correct to the precision presented by substituting these
values into the quadratic difference equation with & = 3.1.



function would. Hence, it can be said that the sequence of values is “random” in
the sense of being consistent with a probability distribution function even though
the values are determined by the simple difference equation (3). This explains
where the random characteristic of chaos comes from.

The sensitivity to initial conditions is illustrated in Figure 3. This figure shows
the sequence of values from equation (3) with « = 4 starting from initial values
of 0.6, 0.600001 and 0.61. It would seem that 0.6 and 0.600001 are pretty close to-
gether. Yet, by the time that the iterations have taken about 80 steps, the values are
quite different. The values starting from 0.6 sit close to zero for about 10 periods
from 78 to period 87 and the values starting from 0.600001 do no such thing. This
extreme dependence on the starting value is what is meant by “sensitive depen-
dence on initial conditions.”

Sensitive dependence on initial conditions is not the same as appearing ran-
dom. It is possible to get either without the other. The sensitive dependence on
initial conditions is more interesting in terms of economic and financial applica-
tions and is not hard to mention in a little more detail.

The Lyapunov exponent A; determines whether or not an equation has such
dependence. The Lyapunov exponent can be interpreted as being related to the
eigenvalue of the system and depends on the behavior of the system with A; > 0
implying sensitive dependence on initial conditions. In financial data, we take
randomness for granted. There are a lot of different factors at work and the ones
that we ignore — the imponderables — are assumed to be a large number of small in-

fluences. Statistics developed in no small part because of economic and financial



data. While error terms may not unimportant in some experiments with inani-
mate objects, imponderable influences are very important in financial data. This
means that equations which determine the evolution of, say, stock prices deter-
ministically are of little interest in terms of characterizing the price of IBM’s stock
price or the S&P 500.

What about sensitiveness to initial conditions? This may be important some-
times, although most current theory talks about convergence to a steady state or
just assumes that the system’s equilibrium is a steady state. Arbitrarily wandering
around forever is not an important part of most financial theories and isn’t likely

to be part of them soon.

3 Nonlinear Time Series

Given the importance of generating randomness and sensitiveness to initial con-
ditions in chaos theory and their possible unimportance in financial data, why

bother with this nonlinear stuff at all?

3.1 Example

Let’s look at some simple data on the deviations of stock and futures prices from
their fair values determined by the cost of carry. Figure 4 shows the behavior of
the adjusted basis between the futures price of the S&P 500 futures and cash on
the New York Stock Exchange on February 13, 1989. The basis is the difference

between the futures and the value of the S&P 500 index adjusted for the cost of



carry (i.e. the cost of borrowing the funds to hold a cash position and receipt of

dividends). The logarithm of the basis is

bt=th—Pt—at ®)

where ; fr is the futures price at t for a contract that expires at T, p; is the cash price
at t and a; is a term representing dividends and the cost of carryﬂ An estimate of
the value of a; has been subtracted from the deviations of the futures and cash
prices in Figure 4. Hence, in Figure 4, the term 4; in equation (5) equals zero when
the futures price equals the cash price plus carrying cost. A simple deterministic
equilibrium model implies that the equilibrium basis shown in Figure 4 always is
zero. Clearly this is not true in Figure 4.

In a stochastic model, the implied equilibrium behavior of the basis might be

given by a simple autoregression such as

by = Bby_1 + & (6)

Ee =0, Es%szz, Eees =0Vt #s.

This linear autoregression is quite restrictive. If || < 1, it implies that the basis al-
ways is predicted to converge to the mean of zero at the same rate . Or if |B| =1,
it never converges. Or if || > 1, it diverges forever. Uniform convergence may or

may not be correct. || > 1 is inconsistent with the equilibrium in the determinis-

°If you are unfamiliar with this type of model, it would take me too far afield to explain more.
Dwyer, Locke and Yu [1996] explain more about this application and how the basis is computed.
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tic theory ever holding. Hence, among these choices, if the deterministic theory is
a guide to what will happen in a stochastic model, || < land the basis converges
uniformly at the same rate for all deviations from the steady-state value of zero.

In fact, though, once the basis is outside bounds determined by transactions
costs, it can pay to arbitrageﬁ For example, if the basis is positive and above the
transactions-cost bound, this means that it can pay to buy the cash (the cheaper)
and sell the futures contract (the more expensive). When the basis returns to zero,
which must be the value of the basis at the expiration of the contract, then the
position can be unwound for a profit. Conversely if the basis is negative and
below the transactions-cost bound. In short, in the figure, if the basis goes outside
the bounds, arbitrage will be profitable. Otherwise not.

This profitability of index arbitrage at some times and not other times sug-
gests that prices may behave differently inside and outside the transactions-cost
bounds. When arbitrage is profitable, the basis may converge due to this arbi-
trage. When arbitrage is not profitable, the basis on a given day such as February
13, 1989 may not tend to converge at allﬂ Then again, it may converge but not at
the same rate as when arbitrage is profitable.

This different behavior depending on transactions costs is likely to be inconsis-

®This use of the term arbitrage is similar to its use in financial markets and not the same as in
asset-pricing models.

"The basis must converge to zero at expiration of the contract. The data, though, are prices
every 15 seconds during one particular day.

As it turns out in this particular application, the basis tends to zero inside the bounds but not as
fast as when outside the bounds. Arguably, this occurs because some investors will buy and sell
the S&P 500 the cheapest way — either with the cash or with the futures. This is sufficient to induce
convergence within the bounds. This does not affect the basic point: the basis behaves differently
outside and inside the bounds because index arbitrage occurs outside the bounds and not inside
the bounds.

11



tent with a simple autoregression such as equation (6). The time-series behavior
of the basis may be different inside and outside the transaction cost bounds. Out-
side the bounds, the basis will tend to converge toward zero, i.e. || < 1. Inside
the bounds, the basis could be a random walk, i.e. p = 1. Alternatively, inside
the transaction cost bounds, the basis may converge to zero but at a slower rate
than when arbitrage is profitable. A model that can represent such behavior of the

basis is

by = ﬁubt_l +e& ifc<bi_y
by = ,BCbt_l +& if —c<b_ygz<c (7)

by = Blbyq+e ifb_yg4<—c

where the parameter § differs depending on the value of the basis (i.e. B # B¢ #
B!) and therefore on whether arbitrage is occurring. As equation @ indicates, the
return to zero may well differ depending on whether basis is above or below the
bounds, i.e. B may not be the same as ﬁl As equation (7)) also suggests, the basis
in the past may trigger arbitrage, and the basis may trigger arbitrage with a delay
d that be more than one period. As a result, the determinant of arbitrage may be
b;_4 and not just the basis last period, i.e. b;_;.

Equation (7) is by no means the only possible model. We have used theoret-
ical considerations to generate the representation (7) but not an explicit theory.

This representation may be too simple in a variety of directions. On the other

8For that matter, the properties of the innovations ¢ need not be the same. This doesn’t matter
for the basic point, that something can be different from a linear equation.
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hand, it may be too complicated: one nonlinear equation may capture the behav-
ior embodied in the set of three equations in (7). The problem of picking the correct
nonlinear model to fit is a tough one and has not been solvedﬂ

Before jumping into nonlinear time series though, let’s go back and review
linear time series analysis briefly. The point of this review of linear time series is

to highlight some basis aspects of nonlinear time series.

3.2 Linear Time Series Basics

What do we mean by linear functions anyway? We can define a linear function (or

map) as a map f(.) by two characteristics:

flaty) = f0)+f(y) ®)
f(Bx) = Bf(x).

Notice that, on this definition, the map f(x) = a + px does not appear to be a
linear map because f(x+y) = a+B(x+y)and f(x)+ f(y) = 2a + B(x +y). This
is trivial to fix though by a redefinition of the the map to g(x) = Bx and adding
the constant « to the variable produced by the mapm This definition works for
deterministic functions and stochastic functions. We can say more about linear

stochastic difference equations.

Nor is it likely to be in general. The number of candidate functions is arbitrarily large and the
the number of data points is anything but arbitrarily large. No matter how much data you have,
there are many, many more functions.

19The constant can be removed from the function by a redefinition of the variable produced.
Define g(x) = f(x) —a = px. Define the variable produced by the function z = f(x) as z* =
z —a = g(x). In short, this is not a big deal.

13



The Wold representation provides a solid linear representation of a time series.
Wold’s Theorem [Anderson 1971, pp. 420-24] says that, if the series x is stationary,

then there exists a representation of x such that
Xp =0+ ) wigr )
i=0

It is standard in much of the time-series literature to use w; to represent the moving-
average coefficients and I follow that tradition even though it is inconsistent with
the notational convention that coefficients are Greek letters. Lest there be any

confusion, the w; are coefficients. The first term has the property that

E[5t+]'|§t, 5t_1, ] — 5t+j’

which means that ¢ is perfectly predictable, i.e. deterministic, such as a constant

term, a trend term or a set of seasonal factors. The second term has the properties

that
szz < o
i=0
Ele] = 0 (10)
c2ift =3
Eletes] =
0 ift#s

For simplicity, we will set the deterministic part J; to zero. It is useful to normalize

wo to unity, i.e. wy = 1)**|The representation using polynomials in the lag operator
Y p & poly & op

This normalization of wy imposes no restriction on x or ¢. It defines the relationship between

14



Lsuch thatLie; = ¢, is

xt = w(L)e;. (11)

If the polynomial in the lag operator w(L) is invertible, this moving-average rep-
resentation can be written 4

w Y L)x; = ¢

or more familiarly as the linear autoregression

xp = w(L)x;_1 + €. (12)

Linear autoregressions seem pretty general and are likely to capture a lot of be-
havior. And in fact, linear autoregressions are capable of characterizing much of
the variation of time series that we observe.

It is important to realize that the Wold representation is not completely general.
Wold’s Theorem holds quite generally and the moving-average representation (9)
with the restrictions exists under these general conditions. In short, the exis-
tence of a linear representation with a constant variance and serially uncorrelated
innovations is quite general. This does not mean that the representation is com-
plete, or even adequate for many possible uses of the series x. The ¢’s that generate
x are guaranteed to be serially uncorrelated, but the higher moments of ¢ and x

are not characterized at all. This representation is a partial characterization of the

the two as Var[x; — E[x¢|e;_1,€;_2,...]] = Var[e] = 2.

12The assumption of invertibility is a trivial restriction. The function is invertible unless there
is a unit root in the moving-average polynomial, in which case the unit root can be removed by
summing (or integrating) the series.
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series. The Wold representation has serially correlated innovations, €’s, but they
need not be independent.
A definition of a linear time series that is complete in terms of characterizing a

times series includes independence of the innovations:

Xp =08+ ) wing_
i=0

Y w? < oo (13)
i=0

7t~ 1ID.

Requiring that the innovations be independent means that higher moments are
characterized. The requirement that the innovations be independent is much more
restrictive than that they be serially uncorrelated with a constant variance. Inde-
pendence implies that third and higher-order non-contemporaneous moments are
Zero. H In summary, we define a linear time series as one that has a linear moving-

average representation with independent innovations .

3.3 Nonlinear Time Series Basics

A general representation of a nonlinear time series follows from this discussion of
a linear time series. For 7 independent as in (10), the Volterra expansion provides

a general representation. This representation exists under general conditions and

3In short, E erep_j€rj = 0V i # 0orj# 0 or both, and similarly for fourth and higher-order
moments.
4The representation generally also will have a deterministic component.
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is

xt—(st‘i‘zwlﬂt z+22w1]’7t illt— ]+222w1]k77t ilt—jMt—k
i=0j=0k=0

i=0j=0
+Y NN wiae—itte— k-1 + e (14)
i=0j=0k=01=0
7 1ID.

A nonlinear time series is one that is not linear, and the equation is not linear if it
has nonzero coefficients w;j, w;jx, wjj, ... on the higher-order terms. The implica-
tions of stationarity of x for the sets of coefficients w in equation are not easy
to characterize. The general relationship between a linear time series and a non-
linear time series is easy to see: the nonlinear equation has a lot of cross-product
terms. The implications of the additional terms are not so obvious. It makes no
basic difference to the rest of this discussion, so I suppress the deterministic part
of equation (14).

A couple of things follow from this discussion of the Wold Representation and
the Volterra series expansion. First, it is not possible to look at means, variances
and covariances of x to determine whether a series is linear. If a series x is linear,
these first and second moments are the functions of the data that can be used
to characterize the series x. It is necessary to look at higher-order moments to
determine whether a series is nonlinear. Second, because higher-order moments
require more data in order to be estimated adequately, a nonlinear model requires

more data than a linear one.

17



As with the Wold representation, it is useful to write the Volterra series ex-
pansion in an autoregressive form. I knows of no general characterization of the
conditions under which the Volterra expansion can be transformed into an

autoregressive representation such as

Xt = f(xt—ll xtle“') + Nt (15)

where f(x;_1,X¢_2,...) is some nonlinear function of the past values of x. This
representation need not exist in general but can be a useful starting point for em-
pirical analysis. How might this representation follow from the Volterra series
expansion? As for the Wold representation, suppress the deterministic term d; for

simplicity. The Volterra expansion can be written in general form as

Xt = fv(ﬂt, Nt—1,Mt—2, ---)77t

and it obviously is no restriction at all to write this as

Xt = fx(xt—lzxt—z,---) +fv(77t/77t—1/77t—2;---)77t-

The restrictiveness of the nonlinear autoregressive representation with an addi-
tive innovation is due to the implicit assumption that, loosely speaking, the
nonlinear function of lagged values of x f*(x;_1,x;_7,...) are able to sufficiently
characterize the behavior of x that fV (1, 1;_1,7:_2,...) is redundant. This need

not be true always, or even possibly in general.
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An example of a function that is not consistent with the nonlinear autoregres-
sive representation with an additive innovation is an ARCH (autoregressive

conditionally heteroskedastic) model. An example of an ARCH model is

Xe =Y Bixi_i+e, €=Ml
i=1
W=7+ ) e (16)
=1

E¢;=0, E¢?=1.

Such a model can be called linear in mean [Brock, Hsieh and LeBaron 1989] because

the conditional expected value is linear in the observations, i.e.,

Elx¢|xi—1, X2, ..] = Y Bixi—i. (17)
i=1

It is easy to see that the conditional expected value ([I7) is a linear function of
the data in the sense of the definition of linear functions (8). [?] ARCH models
and their numerous generalization are very useful, as the huge literature on them
testifies@ ARCH models and their elaborations help to characterize the time-
series behavior of the volatility of a series and are not linear in the sense that they
have nonzero terms on higher-order moving average coefficients in the Volterra

expansion.

15An elaborated ARCH model that is not linear in trhe mean is the MARCH model in which the
conditional standard deviation is included in the right-hand-side of the equation determining the
conditional expected value.

16Enders [1995, Ch.3], Tsay [2002, Ch. 3] and Gourieroux and Jasiak [2002, Ch. 6] summarize the
models.
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3.4 Nonlinear Functions

The set of nonlinear functions is arbitrarily large and, at this level of generality,
there is no obvious reason to limit ourselves to any particular functions. From this
point of view, linear models have the definite advantage that, once we know that
we are going to estimate a linear autoregression, we know that we are going to
estimate the coefficients in equation (12). Once we decide to estimate a nonlinear
autoregression, we have the task of deciding which of an arbitrary large number
of functions to estimate. In practice, a few nonlinear functions have received most
of the attention.

The ARCH model in the last section and elaborations are well known mod-
els that are used often in various parts of finance. In addition, various stochastic
volatility models are additional often used models of asset prices [Tsay 2002, Chs.
3, 10] These models differ from the ARCH models by including stochastic vari-
ation in the volatility (i; in the set of equations (16)). While not exactly in the
immediate spirit of the single-shock Volterra expansion, these equations are no
less nonlinear than the ARCH models themselves.

In the rest of this section, I focus on some basic models that are nonlinear in

mean. For all of the functions,

Ee; =0,Ee; =0, Ee% =0% Bees =0 Vit # s.
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For the functions to be complete representations, it would have to be the case that
g ~1ID.

Constants are suppressed in all equations; they merely would add notational com-
plexity. I use just one lag where feasible to simplify the notation. The generaliza-
tions to multiple lags are relatively obvious.

In the finance literature, the nonlinear autoregressions that have received the
most attention are threshold autoregressions, discussed briefly above. These can

be written most simply as

xp=p'x1tepifx g >c (18)

Xt = ,let,l + slt ifx,;_4g<c (19)

This threshold autoregression essentially allows the behavior of x to evolve differ-
ently depending on whether the value of x; at d periods before t is above or below
a threshold value c. They can have more than two states, as they did in the arbi-
trage example above. As the notation here suggests, the innovations in the series
can have different variances in the different states. A more general representa-
tion would have a data value other than x determining the state. An important
question is whether the values of the parameters are consistent with transitions
back and forth between the states, so that x does not get stuck in one of the two

states These piece-wise linear functions are far from the only possible nonlinear

7This is essentially a question of whether the function is ergodic.
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functions.

A nonlinear model suggested early in the literature is the bilinear function
Xt = Bxp—1 + YXp-1€-1 + €t

This model essentially allows for some of the interaction in the Volterra expansion.
It has been used relatively little, perhaps because estimation involves the cross-
product of x;_1 and ¢;_;. Estimating a moving-average representation in general
is harder than estimating an autoregressive representation, which no doubt has
a lot to do with the greater popularity in finance and economics of autoregres-
sive representations than moving-average or autoregressive moving-average rep-
resentations.

Another nonlinear model is the exponential autoregression

Xt = Bexp—1 + & (20)

Bt = ¢o + p1exp(—yx7_4). (21)

In this model, the autoregressive coefficient B; depends on x;_j. The limiting be-
havior of B; is
lim Bt = ¢o + ¢1
xt—>0
A2, P = o

The squared value of x;_1 in exp(—vx? ,) imposes symmetry on deviations from
q PU=7X 1 p y y
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zero (or the mean of the series if the series is in terms of deviations from its mean).

The smooth transition autoregression function
xp = Pxi—1 + vF(xp-1)xt-1 + &
where F(x;_1) is a continuous function of x;_1. There are many different possible

functions F(.) that can be used. One is the logistic function

1

F(xt,l) = .
1-— exp(—xf_l)

Others are the exponential

F(x-1) = exp(—6x; 1)

and functions based on probability distribution functions such as the normal cu-
mulative distribution function or the normal probability distribution function.

There are many other nonlinear models. Models of autoregressive conditional
duration have recently been used to address the timing of trades in financial
markets [Engle and Russell 1998]. A model that is popular in macroeconomics
but does not appear much in the finance literature is Hamilton’s Markov state-
transition model [1989].

The problem of choosing a particular nonlinear model is tough. A solution that
seems to work is to ask what behavior is being explained and then limit the choices

based on what seem like plausible implications of that behavior. I sometimes think
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of this as: “A little theory goes a long way.”|'°| This does not mean that one has
ruled out all alternatives functions. Ruling out all the alternatives is an impossible
task anyway because the set of all alternatives always is an arbitrarily large set.
It does mean that one has focused on a function that is likely to characterize the
behavior under examination.

While it would be limiting to look at functions using only one time series at a
time, there is no necessary reason that the x’s above generally can’t be treated as
vectors. For practical reasons, the size of nonlinear systems of equations are lim-
ited, but nonlinear time series would be pretty limited if it couldn’t say anything

about how time series are related.

4 Conclusion

I have barely scratched the surface of nonlinear time series, but I hope that I have
left you with two impressions.

First, linear time series analysis is a very restrictive way to look at the world.
Essentially, linear time series analysis can be a thorough characterization of a time
series if the series has constant means, variances and covariances and nonzero
higher moments only contemporaneously. It will imply that a series converges
uniformly, has no tendency to converge, or possibly has cycles. A non-normal

distribution of the innovations in a linear representation can help to characterize

18Bendat [1990, 1998] presents analyses using implications of various functions for statistics, but
I think that he has data with less noise and looks at a more restricted range of functions. Nonethe-
less, the basic idea that I am suggesting is similar even if it does include as many diagnostics of
whether the function is consistent with a statistical summary of the data.
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the series better than a normal distribution, but this fix will not work if the non-
normality of the series varies over time. The problem of selecting a particular
non-normal distribution to estimate, which is similar to the problem of selecting
a particular nonlinear model to estimate, is itself a very tough problem@
Second, nonlinear time series analysis is likely to be very useful for analyzing
some aspects of financial data. While I have discussed things that may be new to
you (I hope so, or I've been wasting your time and mine), nonlinear time series is
a natural extension of linear time series. It’s not trivial to delve into this material,
but much of it is based on things that you already know. While there are many
different nonlinear models, the set of such models that are useful for a particular
problem is smaller. It is not necessary to be a nonlinear-time-series guru to find

nonlinear time series useful and informative.
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Figure 1
Phase Diagram for Logistic Equation
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Figure 2
Phase Diagram for Logistic Equation
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Figure 3

Sequences of Values From Different Starting Points
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Futures Price less Fair Value of Future Cash

Figure 4

S&P 500 Futures and Cash and Rough Estimate of Transactions Costs
February 13, 1989
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